
ASP-III for ALARM Introduction to Verification

Update 06 Jan 98 2.0-1 ALARM 3.006 Jan 98

3Introduction to Verification2 . 0 Ve r i fi c a t i o n R e s u l t s

The results of verification of five FEs are provided in this section of ASP II. The FEs include

Signature Fluctuations, Multipath/Diffraction, Threshold, MTI, and Signal Integration.

Significant findings and implications for model use for each FE are summarized below.

Signature Fluctuations: Errors in checking theoretical limits on Pfa and Pd were found in

subroutine RDRERR, a minor error was found in subroutine RCSPRT, and overflow errors can

occur in subroutine THRESH. In addition, the developer should consider changing the

calculation of "loss" for a non-fluctuating target.

Code quality is generally good; however, the design makes tracing fluctuation effects into the

radar range equation somewhat difficult. Additional comments are recommended.

Internal documentation is fairly adequate, but could be improved. Headers for the subroutines

GETRCS, RCSINP, and RCSINT omit some standard information. Additional comments are

recommended to emphasize or explain fluctuations aspects of several subroutines. The most

serious deficiency is the misinformation about the log-normal distribution.

The external documentation for ALARM 3.0 is inadequate. The most serious problem is in the

User's Manual, which gives incorrect directions for the fluctuation table inputs and gives incorrect

bounds on the variables PSUBD and PSUBFA. According to Blake [A.1-4], they should be

0.1 ≤ PSUBD ≤ 0.9 and 10-12 ≤ PSUBFA ≤ 10-4. In addition, the User's Manual should clearly

explain bounds on the fluctuations table. It also should emphasize that the azimuth bound is for

the total number of azimuth segments, not just half when the symmetry flag is true.

The descriptions of subroutines THRESH and RCSINT in the Programmer's Manual do not

mention the fluctuations portion of these routines; descriptions of these portions should be added.

The Analyst's Manual gives a good description of fluctuations in the section on detection theory; a

reference to this in the section on target RCS might be helpful.

Multipath/Diffraction: The broadest discrepancy is that ALARM 3.0 does not exactly match the
MIT Lincoln Laboratory SEKE code; the following three items differ: (1) the constants in the
logic to determine which propagation effects will be calculated, (2) the definition of the terrain
profile, and (3) the extent of the tangent plane used in the calculation of the multipath effect. Apart
from the differences from SEKE, several minor discrepancies were found in subroutines
MLTPTH, VISBLE and SEKINT. The ALARM external documentation for this FE is inadequate,

because the analyst's manual gives an unacceptably incomplete description of the relevant

algorithms.

Introduction to Verification ASP-III for ALARM

ALARM 3.0 2.0-2 Update 06 Jan 98 06 Jan 98

Threshold: One code discrepancy was found in the preliminary comparisons of S/I to

threshold (T) in subroutines PULSED and PULDOP. The error occurs when the preliminary S/I

equals T, so the comparison test is not passed and additional sources of interference are

(generally) not computed.

A second discrepancy is the error in checking the theoretical limits on Pfa and Pd in RDRERR;

this error is due to using referenced algorithms (from Blake, [A.1-4]) without maintaining the

limits specified by the reference.

A third possible problem is not a discrepancy, since the code implements the design as described

in section 3.3.7 of the User's Manual, and as mentioned in the Programmer's Manual (pages 22-23

and 25-26) and the Analyst's Manual (section 4.2.6). However, it seems inconsistent that no

distinction is made between target detection and deceptive jammer detection in contour plot

mode, but this distinction is made in flight path mode. A re-examination of this design issue is

recommended to the model developer.

Code quality is generally very good in ALARM proper, but not in the post-processing program

BINPRO. The major problem in BINPRO is that it seems to have been written for a UNIX system

and then modified to run on VMS. This can lead to confusion for VMS users.

Internal documentation in ALARM is adequate, but should be improved to provide a consistent

set of information in the subroutine headers.

Several discrepancies were found in the ALARM manuals.

The User's Manual contains several errors in the section describing the binary plot file (page B-3).

In addition, the Input Guide in the User's Manual gives incorrect bounds on PSUBD and

PSUBFA. Appendix F of the User's Manual describes the support programs for ALARM.

BINPRO is discussed on pages F-14 through F-18. The inputs are not described in the same detail

as for the ALARM model proper.

The Programmer's Manual states that program DETECT is described in appendix F of the SUM,

but DETECT is no longer described there. Descriptions of BINPRO, PREPGP, and GNUPLOT

should be added to the Programmer's Manual.

The Analyst's Manual gives a very good description of the calculation of the threshold value in

section 4.4.6, but the last paragraph on page 61 could be mistakenly interpreted as implying that

ALARM provides default values of Pd and Pfa . This manual also provides a very good

description of the calculation of S/I in section 4.2.6, but it should note (as a unique pulse doppler

aspect) that the S/I over all PRFs is selected as the overall S/I for the radar.

ASP-III for ALARM Introduction to Verification

Update 06 Jan 98 2.0-3 ALARM 3.006 Jan 98

MTI: No major problems or anomalies were found with the ALARM MTI references or the

code implementation. The minor problems found in RDRERR could be eliminated by replacing

lines 522 and 560 with the following:

Line 522: 'IF (RMTIMX(IGATE) .LT. RMTIMN(IGATE)) THEN '

Line 560: 'IF (AMTIMX(IGATE) .LT. AMTIMN(IGATE)) THEN'

Code quality is generally good. Internal documentation is adequate, but should be improved to

provide a consistent set of information in the subroutine headers and to correct spelling errors.

External documentation for MTI in ALARM 3.0 is generally good. The manuals have been
updated to match the new code in this version. The minor error in the User's Manual could be
corrected by replacing "NDELAY > 0" with "NDELAY≥ 0".

Integration: No major errors were found. Errors in checking theoretical limits on Pfa and Pd

were found in RDRERR; these errors are due to using referenced algorithms without maintaining

the limits specified by the reference.

Code quality is generally good, although there are some unused input variables with minor

discrepancies between the printed output from RDRPRT and the ALARM input guide. Internal

documentation is adequate, but should be improved to provide a consistent set of information in the

subroutine headers.

The external documentation is somewhat inadequate. The Input Guide in the User's Manual gives

incorrect bounds on PSUBD and PSUBFA. In addition, the Input Guide should warn users that

the value entered for NPULSE should be the equivalent number of pulses integrated and refer to

table 2.2 in Blake [A.1-4]. (The Analyst's Manual warns users to carefully define the number of

pulses integrated, but it does not give specifics or mention equivalent number of pulses

integrated.) Also, the Input Guide should refer to parameter names (not specific values) for array

dimensions.

2 . 0 . 1 C o d e Ve r i fi c a t i o n M e t h o d o l o g y

The SMART verification process differs from classical verification in two main areas. First, the

SMART process is structured according to the FAT; i.e., each FE is verified as a unit. This

contrasts with the classical verification process structure which is based primarily on the software

call hierarchy. The second primary difference is that the classical process depends on software

requirements and design documents written before the code was developed, while the SMART

process addresses mature models for which these documents do not exist. Thus, the SMART

Introduction to Verification ASP-III for ALARM

ALARM 3.0 2.0-4 Update 06 Jan 98 06 Jan 98

verification process is carried out in three major stages: (1) creating a post-development design

document, referred to as the Conceptual Model Specification (CMS); (2) desk checking; and (3)

software testing.

C M S D e v e l o p m e n t

The purpose of the CMS is to describe the developer's conceptual design and specifications for the

model, so that verification using the Military Operations Research Society (MORS) definitions,

described in section 2.0.2. below, can be performed. The DOD-STD-2167A design document

standards were reviewed to develop a format tailored for utility in verifying mature models. The

CMS is currently being written; to date, several FEs are included. ASP II, section 2, contains the

CMS for these FEs.

The CMS contains descriptions of operational concept, top-level design, and detailed design. For

each FE, the detailed design consists of a brief theoretical description, broad design requirements,

engineering design approach, software design, and assumptions and limitations.

D e s k C h e c k i n g

Desk checking is a manual process that consists of three types of procedures: (1) correlating

design with cited references, (2) correlating code with design (logical verification), and (3) code

auditing (code verification). Note that verification of intelligence data is performed by

government agencies and is not part of this effort.

The first procedure is done simply by examining the CMS design descriptions and verifying that

the described equations and algorithms accurately represent or can be derived from references

accepted as credible by the knowledgeable community.

Logical verification includes checking that the code follows the flow diagrams in the CMS. It

also involves examining all lines of code on a subroutine-by-subroutine basis. For each

subroutine, the following steps are performed:

5. Ensure that subroutine input and output reflect those specified by the CMS.

6. Associate sections of code with Design Elements specified in the Design

Approach section of the CMS. Design elements are self-contained entities that

perform a certain function such as an equation, or a computational or data

processing algorithm. Check that the code accurately implements the design

element.

ASP-III for ALARM Introduction to Verification

Update 06 Jan 98 2.0-5 ALARM 3.006 Jan 98

7. Check that the subroutine implemented in code matches any applicable flow

charts that appear in the CMS.

8. Review any existing Model Deficiency Reports to determine if previously

reported errors that apply to this FE have been addressed.

Code verification consists of checking for errors introduced in the coding process. Computer-

Aided Software Engineering (CASE) tools would ordinarily aid this process, but they have not

been used in this effort at the request of the SMART Project Office. Procedures used include the

following:

1. Check whether internal code documentation (prologues, comment lines) are

accurate and adequate.

2. Identify potential overflow and underflow conditions.

3. Identify potential array-bound overwrite conditions.

4. Examine conditional structures for logical branch accessibility.

5. Check miscellaneous code quality characteristics (code structure, variable

usage, etc.).

S o f t w a r e Te s t i n g

The initial step in software testing is to develop a set of software test cases. Some test cases are

designed to exercise the code during run time to verify that the design elements implemented in

the code are performing the required calculations correctly. The values produced by the code are

compared to values produced from the mathematical algorithms by hand or by independent

software. Some test cases are designed to verify that system-specific and user-specified input data

arrive correctly in a subroutine and affect the design element as expected. Other test cases are

designed to determine how any potential conditions for overflow, underflow, array bound

violations, and inaccessible code discovered during desk checking affect model execution.

If the test cases listed above have not exercised all lines of code, additional tests are designed to

do so. This reduces the chance that logical errors have been overlooked. The flow diagrams in the

CMS are assessed for correctness during the effort to execute all logical branches.

The final software test step is to execute the software test cases and analyze and record the results.

These tests are performed in three ways: (1) using an off-line driver to execute subsections of the

Introduction to Verification ASP-III for ALARM

ALARM 3.0 2.0-6 Update 06 Jan 98 06 Jan 98

code, (2) execution of the entire model in debug mode, or (3) execution of the entire model using

instrumented code (diagnostic write statements).

2 . 0 . 2 M O R S D e fi n i t i o n s o f Ve r i fi c a t i o n A c t i v i t i e s

The following terms are approved and used by the Military Operations Research Society [A.1-2]:

Verification: Process of determining that a model implementation accurately represents the

developer's conceptual description and specifications.

Logical Verification: The identification of a set of assumptions and interactions for which

the model correctly produces intended results. Logical verification determines the

appropriateness of the model for a particular application. This is accomplished by the model

designer or the developer's IV&V agent.

Code Verification: A rigorous audit of the code to ensure proper implementation,

accomplished by both the developer and an independent IV&V agent.

Data Verification: Comparison of model input data to the corresponding known real world

or best estimate values. This is typically done by the model user.

